Statistics on the (compact) Stiefel manifold: Theory and Applications
نویسندگان
چکیده
A Stiefel manifold of the compact type is often encountered in many fields of Engineering including, signal and image processing, machine learning, numerical optimization and others. The Stiefel manifold is a Riemannian homogeneous space but not a symmetric space. In previous work, researchers have defined probability distributions on symmetric spaces and performed statistical analysis of data residing in these spaces. In this paper, we present original work involving definition of Gaussian distributions on a homogeneous space and show that the maximum-likelihood estimate of the location parameter of a Gaussian distribution on the homogeneous space yields the Fréchet mean (FM) of the samples drawn from this distribution. Further, we present an algorithm to sample from the Gaussian distribution on the Stiefel manifold and recursively compute the FM of these samples. We also prove the weak consistency of this recursive FM estimator. Several synthetic and real data experiments are then presented, demonstrating the superior computational performance of this estimator over the gradient descent based non-recursive counter part as well as the stochastic gradient descent based method prevalent in literature.
منابع مشابه
Geodesic Monte Carlo on Embedded Manifolds
Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton-Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering me...
متن کاملMultiple point of self-transverse immesions of certain manifolds
In this paper we will determine the multiple point manifolds of certain self-transverse immersions in Euclidean spaces. Following the triple points, these immersions have a double point self-intersection set which is the image of an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold $V^5$ or a boundary. We will show there is an immersion of $S^7times P^2$ in $mathbb{R}^{1...
متن کاملA Neural Stiefel Learning based on Geodesics Revisited
In this paper we present an unsupervised learning algorithm of neural networks with p inputs and m outputs whose weight vectors have orthonormal constraints. In this setting the learning algorithm can be regarded as optimization posed on the Stiefel manifold, and we generalize the natural gradient method to this case based on geodesics. By exploiting its geometric property as a quotient space: ...
متن کاملAsymptotic Matrix Variate von-Mises Fisher and Bingham Distributions with Applications
Probability distributions in Stiefel manifold such as the von-Mises Fisher and Bingham distributions find diverse applications in signal processing and other applied sciences. Use of these statistical models in practice is complicated by the difficulties in numerical evaluation of their normalization constants. In this letter, we derive asymptotical approximations to the normalization constants...
متن کاملSystems Engineering: Optimization on Stiefel Manifold for MIMO System
Applications of multiple input and multiple output (MIMO) with Stiefel manifold are growing in the next generation communications and their system engineering developments. These applications need to be optimized efficiently with less complexity and cost. In this research, optimization problems in MIMO systems using Stiefel manifold are considered. As far as general manifolds are concerned, opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.00045 شماره
صفحات -
تاریخ انتشار 2017